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Abstract. We analyse the probability 1 − δ to be in an optimum
solution after k steps of an inhomogeneous Markov chain which is
specified by a logarithmic cooling schedule c(k) = Γ/ ln (k + 2). We
prove that after k > (n/δ)O(Γ ) steps the probability to be in an optimum
solution is larger than 1 − δ, where n is an upper bound for the size of
local neighbourhoods and Γ is a parameter of the entire configuration
space. By counting the occurrences of configurations, we demonstrate
for an application with known optimum solutions that the lower bound
indeed ensures the stated probability for a relatively small constant in
O(Γ ).
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1 Introduction

Simulated annealing-based algorithms play an important role in the context of
evolutionary algorithms, cf. [7]. Simulated annealing (cf. [9,5]) can be classified
by the underlying cooling schedule, i.e., by the method that determines how the
temperature is lowered at progressing steps of the computation. If the tempera-
ture is kept constant for a (large) number of steps, a homogeneous Markov chain
can be associated with this type of computation. Under some natural assump-
tions, the probabilities of configurations tend to the Boltzmann distribution for
homogeneous Markov chains (cf. [11,12,13]). This type of simulated annealing
algorithms has been studied intensely and numerous heuristics have been devised
for a wide variety of combinatorial optimisation problems [1,4,10].

If the temperature is lowered at any step of the computation, the transi-
tion probabilities represent an inhomogeneous Markov chain. The special case
of logarithmic cooling schedules has been investigated in [2,3,4,6]. B. Hajek [6]
proved that logarithmic simulated annealing tends to an optimum solution if
and only if the cooling schedule is lower bounded by Γ/ ln (k + 2), where Γ is
the maximum value of the escape height from local minima of the underlying
energy landscape.

Given the configuration space F , let af (k) denote the probability to be in
configuration f after k steps of an inhomogeneous Markov chain. The problem is
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to find a lower bound for k such that
∑

f∈Fmin
af (k) > 1 − δ for f ∈ Fmin ⊆ F

minimising the objective function. Let n denote a uniform upper bound for
the number of neighbours of configurations f ∈ F . We obtain a run-time of
k ≥ (n/δ)O(Γ ) to ensure that with probability 1 − δ the minimum value of the
objective function has been approached.

We briefly describe the derivation of the lower bound and then illustrate the
approach by an example from machine learning: From a single positive example
and a number of negative examples a conjunction of shortest length representing
the examples has to be calculated. Counting of configurations demonstrates that
the lower bound for k indeed ensures the stated probability for a relatively small
constant in O(Γ ).

2 Preliminaries

The configuration space is finite and denoted by F . We assume an objective
function Z : F −→ IN that for simplicity takes its values from the set of integers.
By Nf we denote the set of neighbours of f , including f itself. We assume that
F is reversible: Any transition f → f ′, f ′ ∈ Nf , can be performed in the reverse
direction, i.e., f ∈ Nf ′ , and we set

n := max
f∈F

|Nf | .(1)

The set of minimal elements (optimum solutions) is defined by

Fmin :=
{

f : ∀f ′(f ′ ∈ F → Z(f) ≤ Z(f ′)
)}

.

Example. We consider Boolean conjunctive terms defined on n variables. The
conjunctions are of length �log n� and have to be guessed from negative examples
and one positive example σ̃. Hence, F consists of fσ̃ = xσ̃ and all sub-terms f
that can be obtained by deleting a literal from xσ̃ in such a way that all negative
examples are rejected. Each neighbourhood Nf contains at most n′ ≤ n + 1
elements, since deleted literals can be included again. The configuration space
is therefore reversible. The objective function is given by the length of terms f
and in this case the optimum in known and equal to �log n�.

In simulated annealing, the transitions between neighbouring elements are
depending on the objective function Z. Given a pair of configurations [f, f ′],
f ′ ∈ Nf , we denote by G[f, f ′] the probability of generating f ′ from f and
by A[f, f ′] the probability of accepting f ′ once it has been generated from f .
Since we consider a single step of transitions, the value of G[f, f ′] depends on
the set Nf . As in most applications of simulated annealing, we take a uniform
probability which is given by

G[f, f ′] :=
1

|Nf | .(2)
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The acceptance probabilities A[f, f ′], f ′ ∈ ⊆ F are derived from the underlying
analogy to thermodynamic systems [1]:

A[f, f ′] :=

{
1, if Z(f ′) − Z(f) ≤ 0,

e− Z(f′)−Z(f)
c , otherwise,

(3)

where c is a control parameter having the interpretation of a temperature in an-
nealing procedures. Finally, the probability of performing the transition between
f and f ′ is defined by

Pr{f → f ′} =






G[f, f ′] · A[f, f ′], if f ′ 	= f,

1 −
∑

f ′ �= f

G[f, f ′] · A[f, f ′], otherwise.(4)

By definition, the probability Pr{f → f ′} depends on the control parameter c.
Let af (k) denote the probability of being in the configuration f after k steps
performed for the same value of c. The probability af (k) can be calculated in
accordance with

af (k) :=
∑

h

ah(k − 1) · Pr{h → f}.(5)

The recursive application of (5) defines a Markov chain of probabilities af (k),
where f ∈ F and k = 1, 2, .... If the parameter c = c(k) is a constant c, the
chain is said to be a homogeneous Markov chain; otherwise, if c(k) is lowered at
any step, the sequence of probability vectors a(k) is an inhomogeneous Markov
chain. In the present paper we focus on a special type of inhomogeneous Markov
chains where the value c(k) changes in accordance with

c(k) =
Γ

ln(k + 2)
, k = 0, 1, ... .(6)

The choice of c(k) is motivated by Hajek’s Theorem [6] on logarithmic cooling
schedules for inhomogeneous Markov chains. To explain Hajek’s result, we first
need to introduce some parameters characterising local minima of the objective
function:

Definition 1 A configuration f ′ ∈ F is said to be reachable at height h from
f ∈ F , if ∃f0, f1, ... , fr ∈ F

(
f0 = f ∧ fr = f ′) such that G[fu, fu+1] >

0, u = 0, 1, ... , (r − 1) and Z(fu) ≤ h, for all u = 0, 1, ... , r.

We use the notation height(f ⇒ f ′) ≤ h for this property. The function f is a
local minimum, if f ∈ F \ Fmin and Z(f ′) > Z(f) for all f ′ ∈ Nf \ f .

Definition 2 Let gmin denote a local minimum, then depth(gmin) denotes the
smallest h such that there exists a g′ ∈ F , where Z(g′) < Z(gmin), that is
reachable at height Z(gmin) + h.

The following convergence property has been proved by B. Hajek:
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Theorem 1 [6] Given a cooling schedule defined by

c(k) =
Γ

ln(k + 2)
, k = 0, 1, ... ,

the asymptotic convergence
∑

f∈Fmin
af (k) −→

k→∞
1 of the stochastic algorithm that

is based on (3) and (4) is guaranteed if and only if

(i) ∀f, f ′ ∈ F ∃f0, f1, ... , fr ∈ F
(
f0 = f ∧ fr = f ′): G[fu, fu+1] > 0, u =

0, 1, ... , (r − 1);
(ii) ∀h : height(f ⇒ f ′) ≤ h ⇐⇒ height(f ′ ⇒ f) ≤ h;
(iii) Γ ≥ max

gmin
depth(gmin).

In the following, we assume that the conditions (i), ... , (iii) of Hajek’s Theorem
are satisfied for our configurations space F . Furthermore, for simplicity of not-
ations we make the following

Basic Assumptions

The difference of the objective function is the same between neighbou-
ring elements, like in the case of our Example;

For all neighbours f ′ ∈ Nf of f , f ′ 	= f , the value of the objective func-
tion is different from Z(f) (as in the Example).

For two neighbouring elements, the one with the smaller value of the
objective function has more neighbours with a higher value of the objec-
tive function and less neighbours with a smaller value of the objective
function (as in the Example).

Let K0 denote the maximum of the minimum number of transitions to reach an
optimum solution starting from an arbitrary f ∈ F . In Section 3, we will prove
the following convergence result:

Theorem 2 Given the configuration space F and Γ as defined in Theorem 1,
then k ≥ K0 and k > (n/δ)O(Γ ) imply for arbitrary initial probability distributi-
ons a(0) the relation

∑

f̃ �∈Fmin

af̃ (k) ≤ δ, and therefore
∑

f ′∈Fmin

af ′(k) ≥ 1 − δ.

3 Convergence Analysis

We introduce the following partition of the set of configurations with respect to
the value of the objective function:
L0 := Fmin and

Lh+1 := {f : f ∈ F ∧ ∀f ′(f ′ ∈ F\
h⋃

i=0
Li → Z(f ′) ≥ Z(f)}.
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For any particular element f ∈ F , we introduce notations for the number of
neighbours with a certain length. We recall that the definition of the neighbour-
hood relation implies that Nf contains only one element with Z(f) - the element
f itself. We denote

s(f) := |{ f ′ : f ′ ∈ Nf ∧ Z(f ′) > Z(f)}|,(7)
r(f) := |{ f ′ : f ′ ∈ Nf ∧ Z(f ′) < Z(f)}| .(8)

Thus, from the definition of Nf we have

s(f) + r(f) = |Nf | − 1.(9)

We consider the probability af (k) to be in the configuration f ∈ F after k
transitions of an inhomogeneous Markov chain that is defined in accordance
with (6). We observe that for Z(f ′) > Z(f) the acceptance probability (3) can
be rewritten as

e−(Z(f ′)−Z(f))/c(k) =
1

(
k + 2

)(Z(f ′)−Z(f))/Γ
, k ≥ 0.(10)

To simplify notations, we define a new objective function where we maintain the
same notation: Z(f) := Z(f)/Γ .

In (5), we separate the probabilities according to whether or not f ′ equals f ,
and we obtain:

Lemma 1 The value of af (k) can be calculated from probabilities of the previous
step by

af (k) =
(

s(f) + 1
|Nf | −

s(f)∑

i=1

(
k + 1

)− (Z(fi)−Z(f))

|Nf |

)

· af (k − 1) +
s(f)∑

i=1

afi
(k − 1)
|Nfi

| +

+
r(f)∑

j=1

afj (k − 1)
|Nfj

| · 1
(
k + 1

)Z(f)−Z(fj)
.

The representation (expansion) from Lemma 1 will be used in the following as the
main relation reducing af (k) to probabilities from previous steps. Besides taking
into account the value of the objective function in classes Lh, the elements of the
configuration space are distinguished additionally by their minimum distance to
Fmin: Given f ∈ F , we consider a shortest path of length dist(f) with respect
to neighbourhood transitions from f to Fmin. We introduce a partition of F in
accordance with dist(f):

f ∈ Mi ⇐⇒ dist(f) = i ≥ 0, and Md m =
d m⋃

i=0

Mi,(11)

where M0 := L0 = Fmin and d m is the maximum distance. Thus, we distin-
guish between distance levels Mi related to the minimum number of transitions
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required to reach an element of Fmin and the levels Lh that are defined by the
objective function.

Since we want to analyze the convergence to elements from M0 = L0 = Fmin,
we have to show that the value

∑

f �∈M0

af (k)(12)

becomes small for large k. We suppose that k ≥ d m, and we are going backwards
from the kth step. We consider the expansion of a particular probability af (k)
as shown in Lemma 1. At the same step k, the neighbours of f are generating
terms containing af (k−1) as a factor, in the same way, as af (k) generates terms
with factors afi(k −1) and afj

(k −1) in Lemma 1. If we consider the entire sum∑
f �∈M0

af (k), the terms corresponding to a particular af (k−1) can be collected
together to form a single term.

Firstly, we consider f ∈ Mi, i ≥ 2. In this case, f does not have neighbours
from M0, i.e., the expansion from Lemma 1 appears for all neighbours of f in the
reduction of

∑
f �∈M0

af (k) to step (k − 1). Therefore, taking all terms together
that contain af (k − 1), we obtain

af (k − 1) ·
{(

|Nf | − r(f)
|Nf | −

s(f)∑

i=1

1
|Nf | · 1

(
k + 1

)Z(fi)−Z(f)

)

+(13)

+
s(f)∑

i=1

1
|Nf | · 1

(
k + 1

)Z(fi)−Z(f) +
r(f)∑

j=1

1
|Nf |

}

= af (k − 1).

Secondly, if f ∈ M1, the neighbours from M0 are missing in
∑

f �∈M0
af (k) at the

step to (k − 1), i.e., they do not generate terms containing probabilities from
higher levels. For f ′ ∈ M0, the expansion from Lemma 1 contains the terms
afi(k − 1)/ | Nfi | for fi ∈ M1 (and there are no terms for fj with a smaller
value of the objective function since f ′ ∈ M0). Thus, the terms afi(k−1)/ |Nfi |
are not available for f = fi ∈ M1 in the reduction of

∑
f �∈M0

af (k) to step
(k − 1), when one tries to establish a relation like (13) for elements of M1. For
each f ∈ M1, there are r(f) such terms related to neighbours from M0, see (8).
Therefore, in the expansion of

∑
f �∈M0

af (k), the following arithmetic term is
generated when the particular f is from M1:

(
1 − r(f)

| Nf |

)
· af (k − 1).(14)

We introduce the following abbreviations:

ϕ(f ′, f, v) :=

(
k + 2 − v

)−(Z(f ′)−Z(f))

|Nf | ,(15)

Df (k − v) :=
s(f) + 1

|Nf | −
s(f)∑

i=1

ϕ(f ′, f, v).(16)
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Now, the relations expressed in (13) and (14) can be summarized to

Lemma 2 A single step of the expansion of
∑

f �∈M0
af (k) results in

∑

f �∈ M0

af (k) =
∑

f �∈ M0

af (k − 1) −
∑

f ∈ M1

r(f)
|Nf | · af (k − 1) +

+
∑

f ′ ∈ M1

s(f ′)∑

i=1

ϕ(fi, f
′, 1) · afj

(k − 1).

The diminishing factor
(
1− r(f)/ |Nf |

)
appears by definition for all elements of

M1. At subsequent reduction steps, the factor is “transmitted” successively to
all probabilities from higher distance levels Mi because any element of Mi has
at least one neighbour from Mi−1. The main task is now to analyze how this
diminishing factor changes when it is transmitted to higher distance levels. We
denote

∑

f �∈ M0

af (k) =
∑

f �∈ M0

µ(f, v) · af (k − v) +
∑

f ′ ∈ M0

µ(f ′, v) · af ′(k − v),(17)

i.e., the coefficients µ(f̃ , v) are the factors at probabilities after v steps of an
expansion of

∑
f �∈M0

af (k). Starting from step (k−1), the probabilities af ′(k−v),
f ′ ∈ M0, from (17) are expanded in the same way as the probabilities for all
other f 	∈ M0. We establish a recursive relation for the coefficients µ(f̃ , v) defined
in (17), where we apply the same expansion that resulted in equation (13) to
the products µ(f̃ , v) · af̃ (k − v). For neighbouring elements we use f ′ < f̃ if
Z(f ′) < Z(f̃), and f ′ > f̃ for the reverse relation of the objective function.
Thus, taking into account (15) and (16), we obtain the following parameterized
representation:

Lemma 3 The following recurrent relation is valid for the coefficients µ(f̃ , v):

µ(f̃ , v)=µ(f̃ , v − 1) · Df̃ (k − v) +
∑

f ′ < f̃

µ(f ′, v − 1)
|Nf̃ | +(18)

+
∑

f ′′ > f̃

µ(f ′′, v − 1) · ϕ(f ′′, f̃ , v).

For f 	∈ M0, we consider ν(f, v) = 1 − µ(f, v) instead of µ(f, v) itself; for
elements from M0 we take the original value. When µ(f, v) is substituted in
(18) by 1 − ν(f, v), we obtain the same relation for ν(f, v) because the sum of
transition probabilities equals 1 within the neighbourhood Nf . We consider in
more details the terms associated with elements of M0 and M1. We assume a
representation µ(f ′, v − 1) =

∑
u′ T ′

u′ and ν(f, v − 1) =
∑

u Tu, where T ′
u′ and

Tu are arithmetic terms that have been generated at previous steps from the
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elementary terms listed in Lemma 3 for v = 1. Since there are no f ′′ < f ′ for
f ′ ∈ M0, we obtain:

µ(f ′, v) = Df ′(k − v) ·
∑

u′
T ′

u′(f ′) +
∑

f>f ′

(
1 −

∑

u

Tu(f)
)

· ϕ(f, f ′, v)(19)

=
∑

f>f ′
ϕ(f, f ′, v) + Df ′(k − v) ·

∑

u′
T ′

u′(f ′) −(20)

−
∑

f>f ′

∑

u

Tu(f) · ϕ(f, f ′, v).

As can be seen, the term
∑

f>f ′ ϕ(f, f ′, v) is generated at each time step v with
the corresponding ϕ(f, f ′, v). When (18) is written for ν(f, v), we obtain in the
same way for elements of M1:

ν(f, v) =
r(f)
|Nf | + Df (k − v) · ν(f, v − 1) +(21)

+
∑

f ′′>f

ν(f ′′, v − 1) · ϕ(f ′′, f, v) −
∑

f ′ < f

∑
u′ T ′

u′(f ′)
| Nf | ,

where r(f)/ | Nf | is from
∑

f ′<f̃ 1/ | Nf̃ |. The term r(f)/ | Nf | appears in all
recursive equations of ν(f, v), f ∈ M1 and v ≥ 1, and the same is valid for the
value

∑
f>f ′ ϕ(f, f ′, v) in all µ(f ′, v), f ′ ∈ M0. Therefore, all arithmetic terms

T are derived from terms of the type r(f)/ |Nf | and
∑

f>f ′ ϕ(f, f ′, v). We try
to keep track for each individual term that is generated by a recursive step as
given in (18). For this purpose, the coefficients ν(f, v) are represented by a sum∑

i Ti of arithmetic terms (as in the derivation of (19), ..., (21)), and we are now
going to define the terms Ti in more details by an inductive procedure.

Definition 3 The terms r(f)/ | Nf | (the first in (21)), f ∈ M1, and
∑

f>f ′

ϕ(f, f ′, v) (the first sum in (20)), f ′ ∈ M0, are called source terms of ν(f, v)
and µ(f ′, v), respectively, where v ≥ 1.

During an expansion of
∑

f �∈M0
af (k) backwards according to (17), the source

terms are distributed permanently to higher distance levels Mj as well as to
elements from M0. That means, in the same way as for M1, the calculation
of ν(f, v) (µ(f ′, v) for M0) is repeated almost identically at any step, only the
“history” of generations becomes longer. We introduce a counter r(f) to terms
T that indicates the step at which the term has been generated from source
terms. The value r(f) is called the rank of a term and we set r(f) = 1 for source
terms T from Definition 3. Basically, the rank r(f) ≥ 1 indicates the number
of factors when T is represented by the subsequent multiplications according to
the recurrent generation rules (20) and (21).

Let Tj(f̃ , v) be the set of jth rate arithmetic terms from ν(f̃ , v) with the
same rank r(f), where f̃ ∈ Md m\M0. We set

Sj(f̃ , v) :=
∑

T∈Tj(f̃ ,v)

T.(22)
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The same notation is used in case of f ′ = f̃ ∈ M0 with respect to µ(f ′, v). Now,
the coefficients ν(f̃ , v), µ(f ′, v), can be represented by

ν(f̃ , v) =
v∑

j=1

Sj(f̃ , v) and µ(f ′, v) =
v∑

j=1

Sj(f ′, v).(23)

We compare the computation of ν(f, v) and µ(f ′, v) for two different values
v = k1 and v = k2, i.e., ν(f, v) is calculated backwards from k1 and k2, res-
pectively. Let S1

j and S2
j denote the corresponding sums of terms related to two

different starting steps k1 and k2. From Definition 3 we see that the source term
r(f)/ |Nf | does not depend on k. For the second type of source terms, we employ
the simple equation k2 − (k2 − k1 + v) = k1 − v, which leads to

Lemma 4 Given k2 ≥ k1 ≥ K0 and 1 ≤ j ≤ k1, then for each f ∈ M:

S1
j (f, v) = S2

j (f, k2 − k1 + v).

We use (17) and obtain:
∑

f �∈M0

af (k1) =
∑

f �∈M0

(
af (k1) − af (k2)

)
+

∑

f �∈M0

af (k2)(24)

=
∑

f �∈M0

(
ν(f, k2 − k1) − ν(f, 0)

)
· af (k1) +(25)

+
∑

f ′∈M0

(
µ(f ′, 0) − µ(f ′, k2 − k1)

)
· af ′(k1) +

∑

f �∈M0

af (k2).

For the first part of the sum we obtain:
∑

f �∈M0

(
ν(f, k2 − 1) − ν(f, 0)

)
· af (k1)(26)

=
∑

f �∈M0

(k2−k1∑

j=1

S2
j (f, k2 − k1) − S1

0(f, 0)
)

· af (k1),

and Lemma 4 leads to:

∑

f �∈M0

(
ν(f, k2 − k1) − ν(f, 0)

)
· af (k1) =

∑

f �∈M0

k2−k1∑

j=1

S2
j (f, k2 − k1) · af (k1).(27)

The same applies to configurations f ′ ∈ M0.
To find upper bounds for (27), we estimate af (k1) for configurations different

from global and local minima, and the S2
j (f, k2 − k1) are then estimated for

global and local minima separately. To distinguish between the two cases is
necessary since for small j and f different from global and local minima, the
values S2

j (f, k2 − k1) are relatively large (cf. Definition 3). We note that the
recursive application of (18) generates negative summands in the representation
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of values Sj(f, v), as can be seen from Definition 3 (cf. also (20) and (21)). We set
Sj(f, v) = S+

j (f, v) − S−
j (f, v) and Sj(f ′, v) = S+

j (f ′, v) − S−
j (f ′, v) for f ∈ M1

and f ′ ∈ M0, where the partial sums consist of positive products only.
When Sj(f, v), f ∈ M1, and Sj(f ′, v), f ′ ∈ M0, are calculated, the negative

products of Sj−1(f, v−1) become positive for Sj(f ′, v), and the negative products
of Sj−1(f ′, v − 1) become positive for Sj(f, v); see (20) and (21). The negative
products of Sj−1(f, v−1) remain negative in the calculation of Sj(f̃ , v), f̃ ∈ M2,
and the same applies to higher distance levels. Hence, the negative and positive
products can be considered separately at all distance levels. Thus, we concentrate
on upper bounds of S+

j (f, v) only. To simplify notations, we use Sj(f, v) instead
of S+

j (f, v). Furthermore, we use instead of n + 1 from Nf̃ ≤ n + 1 (see (1)) the

value n′ = n+1, and for convenience n again for n′. We set M̂ :=
{
f : r(f) ≥ 1

}
,

and for a constant a > 0 we can prove

∑

f∈Lh∩M̂

af (k) <
2 · (n + 1 − h) · na

(k + 2 − na)γ
.(28)

Now, we estimate Sj(t, v) specifically for local and global minima. Here, we use
the property that backwards expansions “entering” a local or global minimum are
multiplied by 1/(k+2−v)γ , i.e., the upper bound is of the the type Π/(k+2−v)γ ,
where Π represents the sum of products leading from M1 (or M0) to the local
or global minimum. From Lemma 3 we conclude

Sj(f, v) =
∑

Φ1 · Φ2 · · ·Φj ≤
∑

[d,g,h1,h2]

∑

Possible Positions of

D, G, H1, H2

Dd · Gg · Hh1
1 · Hh2

2 ,(29)

d + g + h1 + h2 = j, where D is the probability to stay in a local minimum,
G corresponds to steps decreasing the objective function (we recall, that we are
going backwards in the expansion of af (k − v)), H1 is associated with steps
increasing the objective function, and H2 is from the probability to stay in the
same configuration which is not a local minimum.

For f ∈ Lh we set h(f) = h and we consider f ∈ M\M̂. We set k1 :=
k + 2 − v + j and k2 := k + 2 − v, and by induction on j we show

Lemma 5 For f ∈ M\M̂, Γ > 3, and k ≥ n2·Γ , the following inequality holds:

Sj(f, v) < e
− j

k3·γ
1 ·

(
1 +

1
kγ
2

)h(f)
.(30)

Based on (27) and Lemma 5, we derive an upper bound for
∑

f∈M\M̂ af (k),
which leads to

∑

f∈M\M̂

af (k) <
nb

(k + 2 − nb)γ
, b = const. > 0.(31)
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Now, (28) and (31) are used to prove for c ≥ max{a + 1, b}:

|
∑

f �∈M0

(
ν(f, k2 − k1) − ν(f, 0)

)
· af (k1) | < O

( nc

(k + 2 − nc)γ

)
.(32)

Here, we consider S+
j , and (27) has been applied to these values only. But the

same holds for S−
j , with even a smaller first factor of the expansion, see Lemma 3.

Thus, in the same way we obtain the corresponding upper bound for
(
µ(f ′, 0) −

µ(f ′, k2 − k1)
)
, and we finally complete the

Proof of Theorem 2: We utilise (24) until (26) and employ Theorem 1, i.e.,
if the constant Γ from (6) is sufficiently large, the inhomogeneous simulated
annealing procedure defined by (2), (3), and (4) tends to the global minimum
of Z on F . The value k2 from (32) is larger but independent of k1 = k, i.e., we
can take a k2 > k such that

∑

f̃ �∈M0

af̃ (k2) <
δ

3
.

Additionally, we require that both differences
∑

f̃ �∈M0

(
ν(f̃ , k2 −k) −ν(f̃ , 0)

)
and

∑
f ′∈M0

(
µ(f ′, 0) − µ(f ′, k2 − k)

)
are smaller than δ/3. From (32) we obtain the

condition

O
( nc

(k + 2 − nc)γ

)
<

δ

3
.

We finally arrive at

k >
(n

δ

)O(Γ ) ≥ nc − 2 + O
(3 · nc

δ

)Γ
.

q.e.d.

4 Computational Experiments

We are given a set S ⊆ {0, 1}n of uniformly distributed binary n-tuples η̃ =
η1 · · · ηn that represent negative examples for an unknown target conjunction
C� = x

σi1
i1

&x
σi2
i2

& · · ·&x
σi�
i�

(here, we use x1 ≡ x and x0 ≡ x, i.e., x0 = 1 for
x = 0, and x0 = 0 for x = 1), and a single positive example σ̃ = σ1 · · ·σn:
C�(σ̃) = 1 and ∀η̃(η̃ ∈ S → C�(η̃) = 0). The task is to find a conjunction Cl of
length l ≤ 	 that matches all of the samples, i.e., from C� generating the samples
we do know only the length 	; cf. [8] and the Example in Section 2.

As explained in Section 2, we have Γ ≤ �log n� for the problem to find
a conjunction of length 	 = �log n�. We implemented the search procedure
for m = 32 negative examples, and for each element of F we counted the
number of occurrences during the search procedure, in particular, for Fmin. The
calculations were repeated three times, and we present the average values (we
obsereved only small deviations). The constant c in O(Γ ) = c·Γ was set to c = 1.
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n = 8 and Γ = 3 n = 16 and Γ = 4
k according to Frequency of k according to Frequency of

δ 1 − δ Theorem 2 (c = 1) f ∈ Fmin Theorem 2 (c = 1) f ∈ Fmin

0.50 0.50 4096 0.739 1048576 0.786
0.25 0.75 32768 0.812 16777216 0.895
0.10 0.90 512000 0.945 655360000 0.953
0.01 0.99 512000000 0.996 ————– ——

Frequencies of f ∈ Fmin.

As we can see, the experimental results are in compliance with Theorem 2 for
the small constant c = 1.

References

1. E.H.L. Aarts and J.H.M. Korst. Simulated Annealing and Boltzmann Machines: A
Stochastic Approach, Wiley & Sons, New York, 1989.

2. S. Azencott (editor). Simulated Annealing: Parallelization Techniques. Wiley &
Sons, New York, 1992.

3. O. Catoni. Rough Large Deviation Estimates for Simulated Annealing: Applicati-
ons to Exponential Schedules. Annals of Probability, 20(3):1109 – 1146, 1992.

4. O. Catoni. Metropolis, Simulated Annealing, and Iterated Energy Transformation
Algorithms: Theory and Experiments. J. of Complexity, 12(4):595 – 623, 1996.
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